Start to build Scol using CMAKE


Common to all platforms

Windows target

The minimum compiler supported is the one in Visual Studio 2013.
You can try with a newer version at your own risks !

Android target

With standard tools

i.e. free tools found on the web or provided by Google

With Tegra Android Development Pack

A package provided by Nvidia to build applications for Android. The download process requires authentication to the Nvidia Developper Network (it's free and not too spammy though)

  • TADP
  • On setup, let it download everything or at least the tools described in the previous section.

SDK preparation

You should launch the SDK to download other tools like emulators for each API you want to target.
(Our target API is 17 so you can get any emulator above).

Linux target


Mac OS target


Get the Scol sources

Scol uses Subversion for source control and you can use your SVN client to get the source code.

So first retrieve the sources from "", accept the certificate and go take some coffee.
The source directories contains most of the dependencies, and since some of them are modified they are provided in the sources.

Some sources like curl use Git as source control and are downloaded when building, so make sure it's installed before building the project

Dependencies search paths


Once you get the sources, you can execute "setWindowsSearchPaths.bat" in the dependencies directory.
!!WARNING!! when you execute the bat file using the mouse the current directory is wrong.
You need to start a DOS command line "cmd.exe" as administrator and go to the dependencies directory to start the bat file manually.

This will add needed environment variables and paths.


If you downloaded the TADP, the following variables are likely to be defined already (or they should look alike).
If not, add these to the environment variables
  • ANDROID_HOME : path/to/sdk
  • ANDROID_SDK_HOME : path/to/sdk
  • ANDROID_SDK : path/to/sdk
  • ANDROID_NDK : path/to/ndk
  • ANT_HOME : path/to/ant
  • JAVA_HOME : path/to/jdk -- should be something like "C:\Progra~1\Java\<jdkfolder>"
  • CMAKE : path/to/cmake

Then you should add these variables into the PATH:


Build needed dependencies

From Windows, for Windows

Almost everything is built with CMAKE, but some dependencies still need manual process.
  1. Go in trunk/dependencies/OpenSSL and launch build-openssl.bat in command line tool
  2. Command for Windows: build-openssl vc12 x86 release openssl
  3. Then copy the .lib files from the openssl/build/win32 folder to the dependencies/OpenSSL/lib folder
Next grab the OpenCV sources from
  1. Run cmake-gui and select the OpenCV sources directory
  2. Uncheck Tests, Docs and Java options
  3. Check "WITH_OPENMP" option
  4. In CMAKE_INSTALL_PREFIX set the scol sources directory "trunk/"dependencies/OpenCV/SDK/windows/x86"
  5. Build the INSTALL project in Release and Debug
For FFMPEG, check the trunk/dependencies/ffmpeg/sources/README.txt file
  1. sh win32 release FFmpeg ../sdk/x86
Now you can launch cmake-gui from a Visual Studio command line (it configures environment so you can build things correctly)
  1. Specify the source folder to trunk/dependencies and the build to trunk/dependencies/build/windows/x86
  2. Hit Configure. In the message box, select your Visual Studio version as generator, and check "Use default native compilers".

You will see a list of categories, under which are variables to tweak build parameters.
The category SCOLDEPS contains CMake variables that enable/disable the build of individual SCOL dependencies.
Some of these dependencies depend on one or several others. Since CMake needs to detect these "sub-dependencies" when configuring,
we need to make several build passes, in order to build said "sub-dependencies" before the dependencies that depend on them.

  1. Leave all variables at their default values.
  2. Keep hitting Configure until no variables are highlighted in red.
  3. Hit Generate to generate a Visual Studio project.
  4. Build the project in Visual Studio (Build->Batch Build, check debug and release for "INSTALL" configuration).
  5. When the build is done, in CMake, check LIBPNG, OPENAL, CURL under SCOLDEPS (leave the other variables as they are).
  6. Hit Configure again. When configuring is done, you will see new variables appear in red. Leave them at their default values.
  7. Repeat steps 2 to 4.
  8. Check OGRE, CAUDIO, LIBHARU under SCOLDEPS, hit Configure, and repeat steps 2 to 4.
  9. Check HYDRAX and SKYX under SCOLDEPS, hit Configure, and repeat steps 2 to 4.
  10. HYDRAX / SKYX build might fail due to header conflicts. To solve them, in Visual Studio :
    1. In the solution explorer, open the properties of the RenderSystem_Direct3D11 project.
    2. In the properties window, Select All configurations.
    3. Under Configuration Properties > C/C++ > General, modify the Other include directories entry.
    4. In the directories list, move the directory at the bottom all the way to the top.
    5. Save the changes.
    6. Repeat the same steps for the RenderSystem_Direct3D9 project.
    7. Re-run the build.

Now every required dependency should be built. The ones that we left unchecked aren't needed.

From Windows, for Android

Do the same as for Windows target, but
  • Set source folder to trunk/dependencies and build folder to trunk/scol/build/android/<target abi>
  • Specify the generator : "NMake"
  • The toolchain for crosscompile : trunk/dependencies/CMake/toolchain/android.toolchain.cmake
  • Build dependencies with "nmake install" command from a command line.

Build the Scol project

As for the dependencies:

Windows target

  • Set source folder to trunk/scol and build folder to trunk/scol/build/windows/x86
  • Configure, generate and build from Visual Studio

Android target

  • Set source folder to trunk/scol and build folder to trunk/scol/build/android/<target abi>
  • If you're using Nsight with Visual Studio (TADP), some build paramaters should be modified for each build if you want to install and test the project on a device :
    - Open ScolLauncher subproject -> properties
    - Configuration Properties -> General -> Configuration Type -> Make Application (ndk-build -> .apk|.so|.a)
    - Configuration Properties -> Deployment -> Fast Deploy -> No
    - Configuration Properties -> Ant Build -> Skip Ant Step -> No
  • Without TADP, after it's build, go to trunk/scol/build/android/<target abi>/App/bin, and run "ant debug install" if you wish to install the project on an emulator or your device

Start your new plugin

Source paths

Start by creating a directory with your new plugin name in the trunk/scol/plugins folder.
For example trunk/scol/plugins/myPlugin

Usually we prefer to separate the sources and the includes.
So creates a "src" and "include" directory in your plugin folder.

Creates the empty files you will need for your project, usually :
- include/myplugin.h for your classes declaration
- src/myplugin.cpp for your classes definition
- src/scolplugin.cpp for the Scol binding functions


If your project need an external SDK or dependencies, add then in the trunk/dependencies directory.
Then create a findMydepname.cmake file in trunk\scol\CMake\Packages.
You can copy and change an existing Find.cmake file to make yours.
Start from a simple one like FindMyo.cmake for example.

Cmake files

It's time to creates the CMAKE script for your plugin.

Create a "CMakeLists.txt" file in the plugin directory.

And edit the file with a text editor.

# This file is part of the CMake build system for Scol
# The contents of this file are placed in the public domain. Feel
# free to make use of it in any way you like.

# CmakeList file for Myplugin

#Your project name

# define header and source files for the library


# Add includes directories from dependencies
#  include_directories(include ${MYDEP_INCLUDE_DIRS})

# Add definition for P4 optimizations, warnings removal.
add_definitions(-DOPTI_P4 -D_CRT_SECURE_NO_WARNINGS -D)

# Add dependencies libraries
#  )

# setup Scol plugin target
add_dependencies(myPLugin kernel)

# set the dll version.
set_target_properties(myPLugin PROPERTIES VERSION ${Scol_VERSION} SOVERSION ${Scol_VERSION_MAJOR})
target_link_libraries(myPLugin ${LIBRARIES})

# install Scol

Now we need to declare this new plugin in the common Scol cmake files.
Edit the trunk/scol/CMakeLists.txt file and add your plugin definition like the following.

If you don't have dependencies.

option(Scol_BUILD_MYPLUGIN "Build myPluginplugin, my library" TRUE)

If you have depencies

cmake_dependent_option(Scol_BUILD_MYPLUGIN "Build myPlugin, my library." TRUE "MYDEP_FOUND;ZLIB_FOUND;PNG_FOUND" FALSE)

Now edit the trunk/scol/plugin/CMakeLists.txt file and add the following.

# Configure myPlugin plugin build
endif ()

Only if you have dependencies, edit the trunk/scol/CMake/ScolDependencies.cmake file and add the dependencies resolution as the following

# Find MyDep
macro_log_feature(MYDEP_FOUND "Mydep" "MydepLibrary" "" FALSE "" "")

Almost done

Open the CMAKE-gui again.
Hit the "Configure button" and check if you found your plugin in the scol group.
Then hit the generate button, and open the scol.sln project again.

You should have the project added in Visual Studio.

README.txt Magnifier (2.59 KB) arkeon, 03/02/2017 03:12 PM